



Web: ejournal.uinib.ac.id/jurnal/index.php/MAp Email: map_journal@uinib.ac.id

GENERALISASI q-DERIVASI DI BE-ALJABAR

GENERALIZATION q-DERIVATION IN BE-ALGEBRA

Elsi Fitria^{1§}, Endah Dwi Jayanti², Sri Gemawati³

¹Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau, Pekanbaru, Riau [Email: elsifitria823@gmail.com]

² Jurusan Syariah dan Ekonomi Islam, Sekolah Tinggi Agama Islam Negeri Bengkalis, Riau [Email: endahdwijayanti77@gmail.com]

³Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau, Pekanbaru [Email: gemawati.sri@gmail.com]

[§]Corresponding Author

Received 04 Mei 2023; Accepted 08 Juni 2023; Published 30 Juni 2023;

Abstrak

BE-aljabar adalah suatu aljabar (X; *, 1) tipe (2, 0) yang memenuhi aksioma (BEI) x * x = 1, (BE2) x * 1 = 1, (BE3) 1 * x = x, dan (BE4) x * (y * z) = y * (x * z) untuk setiap $x, y, z \in X$. Pada artikel ini, didefinisikan konsep generalisasi q-derivasi di BE-aljabar dan ditentukan sifat-sifatnya. Kemudian, dibahas sifat-sifat kernel dari suatu generalisasi q-derivasi di BE-aljabar berdasarkan kaitannya dengan elemenelemennya.

Kata Kunci: *q*-derivasi, generalisasi *q*-derivasi, *BE*-aljabar, kernel

Abstract

BE-algebra is an algebra (X; *, 1) of type (2, 0) that satisfies the axioms $(BE1) \ x * x = 1$, $(BE2) \ x * 1 = 1$, $(BE3) \ 1 * x = x$, and $(BE4) \ x * (y * z) = y * (x * z)$ for all $x, y, z \in X$. In this paper, the concept of generalization of q-derivation in BE-algebra is defined and its properties are determined. Then, we discuss the properties of the kernel of a generalized q-derivation in BE-algebra based on their relation to its elements.

Keywords: q-derivation, generalized q-derivation, BE-algebra, kernel

1. Pendahuluan

Kajian tentang struktur aljabar semakin berkembang dengan ditemukannya struktur aljabar baru. Iseki [1] memperkenalkan konsep *BCI*-aljabar dan *BCK*-aljabar. Berbagai bentuk generalisasi dari *BCK*-aljabar telah dibahas oleh peneliti. Diantaranya adalah *BE*-aljabar yang telah dibahas oleh H. S. Kim dan Y. H.

Kim [2]. BE-aljabar adalah suatu aljabar (X; *, 1) tipe (2, 0) yang memenuhi aksiomaaksioma berikut: (BE1) x * x = 1, (BE2) x * 1 = 1, (BE3) 1 * x = x, dan (BE4) x * (<math>y * z) = y * (x * z) untuk setiap $x, y, z \in X$. Adapun kajian lebih lanjut tentang BE-aljabar telah dibahas oleh Kim [3]. Selanjutnya, Ahn

dan Han [4] memperkenalkan *BP*-aljabar yang pengkonstruksiannya juga berkaitan dengan konsep *BCI*-aljabar dan *BCK*-aljabar.

Dalam kajian aljabar abstrak, derivasi adalah suatu fungsi yang memetakan suatu himpunan ke dirinya sendiri berdasarkan suatu aturan tertentu. Konsep derivasi pertama kali diperkenalkan dalam kajian ring dan *near* ring [5], kemudian, telah diaplikasikan pada beberapa struktur aljabar lainnya. Al-Shehrie [6] telah membahas konsep derivasi di B-aljabar. Suatu pemetaan d dari B-aljabar (X; *, 0) ke dirinya sendiri dikatakan left-right derivasi ((l, r)-derivasi) di X jika untuk setiap x, $y \in X$ memenuhi

$$(x * y) = (d(x) * y) \land (x * d(y))$$
 (1)
dan *d* dikatakan *right-left* derivasi ((*r*, *l*)-derivasi) di *X* jika

 $(x*y) = (x*d(y)) \land (d(x)*y)$ (2) dengan mendefinisikan $x \land y = y*(y*x)$ untuk setiap $x, y \in X$. d dikatakan derivasi di Xjika merupakan (l, r)-derivasi sekaligus (r, l)derivasi di X.

Konsep derivasi juga dibahas di BEaljabar oleh Kim dan Lee [7]. Suatu self- $map\ d$ dari BE-aljabar (X; *, 1) disebut derivasi di Xjika untuk setiap $x, y \in X$ memenuhi

 $(x * y) = (x * d(y)) \lor (d(x) * y)$ (3) dengan mendefinisikan $x \lor y = (y * x) * x$ untuk setiap $x, y \in X$. Kim dan Davvaz [8] membahas konsep f-derivasi di BE-aljabar dengan melibatkan suatu endomorfisma f. Selain itu, sebagai pengembangan dari konsep derivasi dan f-derivasi di BE-aljabar, Kim dalam [9] dan [10] juga membahas konsep generalisasi derivasi dan generalisasi f-derivasi di BE-aljabar. Konsep generalisasi derivasi dan f-derivasi tersebut melibatkan dua self-map pada pendefinisiannya.

Konsep t-derivasi dan q-derivasi di BE-aljabar telah dibahas oleh Anhari et al. dalam [11] dan [12]. Pengkonstruksian q-derivasi tersebut mengacu pada penelitian t-derivasi di BP-aljabar [13], yaitu dimulai dengan mendefinisikan pemetaan $d_q(x) = q * x$ dengan $q, x \in BE$ -aljabar (X; *, 1), lalu mendefinisikan konsep q-derivasi di BE-aljabar dan ditentukan sifat-sifatnya.

Adapun jenis derivasi lainnya yang telah dibahas oleh peneliti adalah konsep f_q -derivasi di BM-aljabar [14]. Seperti halnya pendefinisian q-derivasi, pengkonstruksian f_q -derivasi di BM-aljabar, juga melibatkan pemetaan yang mirip dengan d_q , namun disertakan suatu pemetaan f yang merupakan endomorfisma di BM-aljabar. Gemawati et al. [15] juga membahas konsep f_q - derivasi di struktur aljabar lainnya, yaitu BN_1 -aljabar. Selanjutnya, Fitria et al. [16] telah membahas pengembangan dari t-derivasi di B-aljabar dengan melibatkan dua self-map di B-aljabar.

Berdasarkan konsep *q*-derivasi di *BE*-aljabar oleh Anhari et al. [11] dan konsep generalisasi *t*-derivasi di *B*-aljabar oleh Fitria et al. [16] dibahas suatu jenis derivasi baru sebagai bentuk pengembangan dari konsep *q*-derivasi di *BE*-aljabar, yaitu generalisasi *q*-derivasi. Kemudian, berdasarkan konsep

tersebut ditentukan sifat-sifat generalisasi *q*-derivasi di *BE*-aljabar, serta sifat-sifat kernel dari generalisasi *q*-derivasi di *BE*-aljabar.

2. Landasan Teori

Pada bagian ini, diberikan beberapa definisi yang diperlukan untuk mengkonstruksi hasil utama penelitian, yaitu definisi dan teori dasar tentang *BE*-aljabar, derivasi di *BE*-aljabar, dan *t*-derivasi di *BE*-aljabar yang semua konsep tersebut telah dibahas dalam [2], [3], [7], [12], dan [16].

Definisi 2.1. [2] Suatu aljabar (X; *, 1) tipe (2, 0) dikatakan BE-aljabar jika memenuhi aksioma-aksioma berikut:

$$(BE1) x * x = 1,$$

$$(BE2) x * 1 = 1,$$

$$(BE3) \ 1 * x = x,$$

$$(BE4) x * (y * z) = y * (x * z),$$

untuk setiap $x, y, z \in X$.

Misalkan (X; *, 1) adalah BE-aljabar. Didefinisikan relasi \leq pada X sebagai $x \leq y$ jika dan hanya jika x * y = 1 untuk setiap $x, y \in X$.

Contoh 1. Misalkan $R = \{1, 2, 3, 4, 5, 6\}$ adalah suatu himpunan yang didefinisikan pada Tabel 1.

Tabel 1: Tabel Cayley untuk (R; *, 1)

*	1	2	3	4	5	6
1	1	2	3	4	5	6
2	1	1	2	4	4	5
3	1	1	1	4	4	4
4	1	2	3	1	2	3
5	1	1	2	1	1	2
6	1	1	1	1	1	1

Generalisasi q — Derivasi di BE-Aljabar

Berdasarkan Tabel 1 dapat ditunjukkan bahwa (R; *, 1) adalah BE-aljabar.

Definisi 2.2. [2] Misalkan (X; *, 1) adalah BE-aljabar dan F subhimpunan tak kosong dari X. F dikatakan *filter* dari X jika

$$(F1)$$
 1 \in F ,

(F2) $x \in F$ dan $x * y \in F$ mengakibatkan $y \in F$.

Dari Contoh 1 diperoleh bahwa $F_1 = \{1, 2, 3\}$ adalah *filter* dari R, sedangkan $F_2 = \{1, 2\}$ bukan *filter* dari R, karena $2 \in F_2$ dan $2 * 3 \in F_2$, tetapi $3 \notin F_2$.

Definisi 2.3. [2] Suatu *BE*-aljabar (X; *, 1) dikatakan *self-distributive* jika x * (y * z) = (x * y) * (x * z) untuk setiap $x, y, z \in X$.

Contoh 2. Misalkan $X = \{1, a, b, c, d\}$ adalah suatu himpunan yang didefinisikan pada Tabel 2.

Tabel 2: Tabel Cayley untuk (X; *, 1)

*	1	а	b	С	d
1	1	а	b	С	d
а	1	1	b	С	d
b	1	а	1	С	С
С	1	1	b	1	b
d	1	1	1	1	1

Berdasarkan Tabel 2 dapat ditunjukkan bahwa (X; *, 1) adalah BE-aljabar yang memenuhi sifat *self-distributive*. Sedangkan, BE-aljabar pada Contoh 1 tidak memenuhi sifat *self-distributive*, karena untuk x = 5, y = 2, dan z = 6 diperoleh 5*(2*6) = 5*5 = 1, sedangkan (5*2)*(5*6) = 1*2 = 2.

Proposisi 2.4. [7] Misalkan (X; *, 1) adalah *BE*-aljabar, maka identitas berikut berlaku

untuk setiap $x, y, z \in X$.

$$(P1) x * (y * x) = 1,$$

$$(P2) x * ((x * y) * y) = 1,$$

(P3) Misalkan (X; *, 1) adalah BE-aljabar self-distributive. Jika $x \le y$, maka $z * x \le z * y$ dan $y * z \le x * z$.

Konsep derivasi di BE-aljabar telah dibahas dalam [7]. Misalkan (X; *, 1) adalah BE-aljabar. Didefinisikan $x \lor y = (y * x) * x$ untuk setiap $x, y \in X$.

Definisi 2.5. [7] Suatu *self-map d* pada *BE*-aljabar (X; *, 1) disebut derivasi di X jika $d(x * y) = (x * d(y)) \lor (d(x) * y)$ untuk setiap $x, y \in X$.

Definisi 2.6. [8] Misalkan (X; *, 1) adalah *BE*-aljabar. Suatu pemetaan *self-map d* dari X disebut reguler jika d(1) = 1.

Konsep himpunan tetap dan kernel dari suatu derivasi di BE-aljabar telah dibahas dalam [7]. Misalkan (X; *, 1) adalah BE-aljabar dan d adalah derivasi di X. Didefinisikan himpunan tetap $(fixed\ set)$ dari d sebagai

$$Fix_d(X) = \{x \in X : d(x) = x\},\$$

untuk setiap $x \in X$, dan kernel dari d sebagai $Kerd(X) = \{x \in X : d(x) = 1\}$, untuk setiap $x \in X$.

Definisi 2.7. [3] Misalkan (X; *, 1) dan (Y; *, 1) adalah *BE*-aljabar. Suatu pemetaan $f: X \rightarrow Y$ disebut homomorfisma jika memenuhi

$$f(x * y) = f(x) * f(y),$$

untuk setiap $x, y \in X$.

Suatu homomorfisma f disebut endomorfisma jika $f: X \to Y$.

Generalisasi q — Derivasi di BE-Aljabar

Definisi 2.8. [12] Misalkan (X; *, 1) adalah *BE*-aljabar. Suatu pemetaan d_q dari X ke dirinya sendiri didefinisikan sebagai $d_q(x) = q * x$ untuk setiap $q, x \in X$.

Definisi 2.9. [12] Misalkan (X; *, 1) adalah BE-aljabar. Suatu pemetaan d_q dari X ke dirinya sendiri disebut q-derivasi di X jika untuk setiap $x, y \in X$ memenuhi

$$d_a(x * y) = (x * d_a(y)) \lor (d_a(x) * y)$$
 (4)

Definisi 2.10. [16] Misalkan (X; *, 0) adalah Baljabar. Suatu pemetaan D_t dari X ke dirinya
sendiri dikatakan generalisasi (l, r)-t-derivasi di X jika terdapat suatu (l, r)-t-derivasi d_t di Xsehingga

$$D_t(x * y) = (D_t(x) * y) \land (x * d_t(y))$$

untuk setiap $x, y \in X$ dan D_t dikatakan generalisasi (r, l)-t-derivasi di X jika terdapat suatu (r, l)-t-derivasi d_t di X sehingga

$$D_t(x*y) = (x*D_t(y)) \wedge (d_t(x)*y).$$

Jika D_t adalah generalisasi (l, r)-t-derivasi sekaligus generalisasi (r, l)-t-derivasi di X, maka D_t dikatakan generalisasi t-derivasi di X.

3. Hasil Dan Pembahasan

Pada bagian ini didefinisikan konsep generalisasi *q*-derivasi di *BE*-aljabar dan diberikan sifat-sifat yang dimilikinya.

Definisi 3.1. Misalkan (X; *, 1) adalah BE-aljabar. Suatu pemetaan D_q dari X ke dirinya sendiri dikatakan generalisasi q-derivasi di X jika terdapat suatu q-derivasi d_q di X sehingga

$$D_q(x*y) = (x*D_q(y)) \lor (d_q(x)*y)$$
 untuk setiap $x, y \in X$.

Berikut ini diberikan sifat yang menyatakan eksistensi dari generalisasi *q*-derivasi di *BE*-aljabar.

Teorema 3.2. Misalkan (X;*,1) adalah BE-aljabar dan D_q adalah suatu pemetaan dari X ke dirinya sendiri, maka D_1 adalah generalisasi q-derivasi di X.

BUKTI. Misalkan (X; *, 1) adalah BE-aljabar dan D_q adalah suatu pemetaan dari X ke dirinya sendiri. Berdasarkan aksioma BE1 dan BE3 untuk setiap $x, y \in X$ diperoleh

$$D_{1}(x * y) = 1 * (x * y)$$

$$= [(x * y) * (x * y) * (x * y)$$

$$= (x * y) \lor (x * y)$$

$$= (x * (1 * y)) \lor ((1 * x) * y)$$

$$D_{1}(x * y) = (x * D_{1}(y)) \lor (d_{1}(x) * y).$$

Jadi, terbukti bahwa D_1 adalah generalisasi q-derivasi di X. Dengan demikian, Teorema 3.2 terbukti. \square

Selanjutnya diberikan sifat-sifat generalisasi *q*-derivasi di *BE*-aljabar.

Teorema 3.3. Misalkan (X; *, 1) adalah BEaljabar. Jika D_q adalah generalisasi q-derivasi di X, maka $D_q(x) = D_q(x) \lor x$ untuk setiap $x \in X$.

BUKTI. Misalkan (X; *, 1) adalah BE-aljabar dan D_q adalah generalisasi q-derivasi di X. Berdasarkan aksioma BE2 dan BE3 untuk setiap $x \in X$ diperoleh

$$D_{q}(x) = D_{q}(1 * x)$$

$$= (1 * D_{q}(x)) \lor (d_{q}(1) * x)$$

$$= D_{q}(x) \lor ((q * 1) * x)$$

$$= D_{q}(x) \lor (1 * x)$$

$$D_{q}(x) = D_{q}(x) \lor x.$$

Dengan demikian, Teorema 3.3 terbukti. \square **Teorema 3.4.** *Misalkan* (X;*,1) *adalah BE-aljabar. Jika* D_q *adalah generalisasi* q-derivasi di X, maka $D_q(D_q(x)*x) = 1$ untuk setiap $x \in X$.

BUKTI. Misalkan (X;*,1) adalah BE-aljabar dan D_q adalah generalisasi q-derivasi di X. Berdasarkan aksioma BE1 dan BE2 untuk setiap $x \in X$ diperoleh

$$D_{q}(D_{q}(x) * x)$$

$$= (D_{q}(x) * D_{q}(x)) \lor (d_{q}(D_{q}(x)) * x)$$

$$= 1 \lor (d_{q}(D_{q}(x)) * x)$$

$$= [(d_{q}(D_{q}(x)) * x) * 1] * 1$$

$$= 1 * 1$$

$$= 1.$$

Dengan demikian, Teorema 3.4 terbukti. \Box **Teorema 3.5.** *Misalkan* (X;*,1) *adalah BE-aljabar dan* D_q *adalah generalisasi q-derivasi di* X. *Jika* $x*D_q(y) = D_q(x)*y$ untuk setiap $x,y \in X$, *maka* D_q *adalah fungsi identitas*.

BUKTI. Misalkan (X;*,1) adalah BE-aljabar dan D_q adalah generalisasi q-derivasi di X. Berdasarkan aksioma BEI dan BE3, dan karena $x*D_q(y)=D_q(x)*y$ untuk setiap $x,y\in X$ diperoleh

$$D_{q}(x) = D_{q}(1 * x)$$

$$= (1 * D_{q}(x)) \lor (d_{q}(1) * x)$$

$$= (D_{q}(1) * x) \lor ((q * 1) * x)$$

$$= ((q * 1) * x) \lor (1 * x)$$

$$= (1 * x) \lor x$$

$$= x \lor x$$

$$= (x * x) * x$$

$$= 1 * x$$

$$D_a(x) = x.$$

Jadi, D_q adalah fungsi identitas, maka teorema ini terbukti. \Box

Teorema 3.6. Misalkan (X;*,1) adalah BE-aljabar dan D_q adalah generalisasi q-derivasi di X. Jika d_q adalah fungsi identitas, maka D_q adalah reguler.

BUKTI. Misalkan (X; *, 1) adalah BE-aljabar dan D_q adalah generalisasi q-derivasi di X. Karena d_q adalah fungsi identitas dan dari Aksioma BE1 dan BE3, untuk setiap $x \in X$ diperoleh

$$\begin{split} D_{q}(1) &= D_{q}(x * x) \\ &= (x * D_{q}(x)) \lor (d_{q}(x) * x) \\ &= (x * D_{q}(x)) \lor (x * x) \\ &= (x * D_{q}(x)) \lor 1 \\ &= (1 * (x * D_{q}(x))) * (x * D_{q}(x)) \\ &= \left(x * D_{q}(x)\right) * \left(x * D_{q}(x)\right) \\ D_{q}(1) &= 1. \end{split}$$

Jadi, terbukti bahwa D_q reguler. Dengan demikian, Teorema 3.6 terbukti. \square

Teorema 3.7. Misalkan (X; *, 1) adalah BE-aljabar dan D_q adalah generalisasi q-derivasi di X.

- (i) $Jika \quad x \in KerD_q$, $maka \quad x \lor y \in KerD_q$ untuk setiap $y \in X$.
- (ii) $Jika \quad y \in KerD_q$, $maka \quad x * y \in KerD_q$ untuk setiap $x \in X$.

BUKTI. Misalkan Misalkan (X; *, 1) adalah BE-aljabar dan D_q adalah generalisasi q-derivasi di X.

(i) Karena
$$x \in KerD_q$$
, maka $D_q(x) = 1$.
Kemudian, dari Aksioma $BE2$ diperoleh

$$\begin{split} &D_{q}(x \vee y) \\ &= D_{q}((y * x) * x) \\ &= \left[(y * x) * D_{q}(x) \right] \vee \left[d_{q}(y * x) * x \right] \\ &= \left[(y * x) * 1 \right] \vee \left[d_{q}(y * x) * x \right] \\ &= 1 \vee \left[d_{q}(y * x) * x \right] \\ &= \left[\left(d_{q}(y * x) * x \right) * 1 \right] * 1 \\ &= 1. \end{split}$$

Jadi, terbukti bahwa jika $x \in KerD_q$, maka $x \lor y \in KerD_q$ untuk setiap $y \in X$.

(ii) Misalkan $y \in KerD_q$, maka $D_q(y) = 1$. Dari Aksioma *BE2* diperoleh

$$D_{q}(x * y)$$

$$= (x * D_{q}(y)) \lor (d_{q}(x) * y)$$

$$= (x * 1) \lor (d_{q}(x) * y)$$

$$= 1 \lor (d_{q}(x) * y)$$

$$= ((d_{q}(x) * y) * 1) * 1$$

$$= 1.$$

Jadi, terbukti bahwa jika $y \in KerD_q$, maka $x * y \in KerD_q$ untuk setiap $x \in X$. \Box

4. Kesimpulan Dan Saran

Pada artikel ini, didefinisikan konsep generalisasi *q*-derivasi di *BE*-aljabar sebagai bentuk pengembangan dari konsep *q*-derivasi di *BE*-aljabar. Dapat disimpulkan bahwa ada beberapa kemiripan sifat generalisasi *q*-derivasi di *BE*-aljabar dengan sifat-sifat *q*-derivasi di *BE*-aljabar. Namun, tentunya tidak

[13]

semua sifat di *q*-derivasi di *BE*-aljabar dapat diterapkan ke generalisasinya.

Daftar Pustaka

- [1] K. Isk, "An Algebra Related with a Propositional Calculus," 1966.
- [2] H. Sik Kim and Y. Hee Kim, "ON BE[14] ALGEBRAS," 2006.
- [3] K. H. Kim, "A NOTE ON BE-ALGEBRAS," 2010.
- [4] S. Shin Ahn and J. Soon Han, "ON BP[15] ALGEBRAS," 2013.
- [5] C. Haetinger, M. Ashraf, S. Ali, and C. Haetinger, "ON DERIVATIONS IN RINGS AND THEIR APPLICATIONS Some of the authors of this publication are also working on these relate [16] projects: additive mappings in rings with involutions View project Orthogonal Generalized Symmetric Higher bi-Derivations and Generalized Higher Derivations on Γ-Rings View project," 2006. [Online]. Available: http://ensino.univates.br/~chaet
- [6] N. Al-Shehrie, "Derivations of B-algebras," *Journal of King Abdulaziz University-Science*, vol. 22, no. 1, pp. 71–83, 2010, doi: 10.4197/sci.22-1.5
- [7] K. H. Kim and S. M. Lee, "ON DERIVATIONS OF BE-ALGEBRAS," *Honam Mathematical Journal*, vol. 36, no. 1, pp. 167–178, Mar. 2014, doi: 10.5831/hmj.2014.36.1.167.
- [8] K. H. Kim and B. Davvaz, "ON f-DERIVATIONS OF BE-ALGEBRAS," Journal of the Chungcheong Mathematical Society, vol. 28, no. 1, pp. 127–138, Feb. 2015, doi: 10.14403/jcms.2015.28.1.127.
- [9] K. H. Kim, "ON GENERALIZED DERIVATIONS OF BE-ALGEBRAS," *Journal of the Chungcheong Mathematical Society*, vol. 27, no. 2, pp. 227–236, May 2014, doi: 10.14403/jcms.2014.27.2.227.
- [10] K. H. Kim and S. M. Lee, "On generalized f-derivations of BE-algebras," *International Mathematical Forum*, vol. 9, pp. 523–531, 2014, doi: 10.12988/imf.2014.4228.
- [11] W. Anhari, "On t-Derivations of BE-algebras," INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER RESEARCH, vol. 10, no. 06, Jun. 2022, doi: 10.47191/ijmcr/v10i6.04.
- [12] W. Anhari, "On Q-Derivations of BE-Algebras," *INTERNATIONAL JOURNAL OF*

MATHEMATICS AND COMPUTER RESEARCH, vol. 10, no. 08, Aug. 2022, doi: 10.47191/ijmcr/v10i8.04.

T. Fuja Siswanti and S. Gemawati, "ί μί²•-Derivations in BP-Algebras," 2021. [Online]. Available:

https://sintechcomjournal.com/index.php/stc/index

- E. Yattaqi, S. Gemawati, and I. Hasbiyati, "fqderivasi di BM-aljabar," *Jambura Journal of Mathematics*, vol. 3, no. 2, pp. 155–166, Jun. 2021, doi: 10.34312/jjom.v3i2.10379.
- S. Gemawati, A. Sirait, M. M, and E. Fitria, "fq-Derivations of BN1-Algebras," *International Journal of Mathematics Trends and Technology*, vol. 67, no. 11, pp. 1–13, Nov. 2021, doi: 10.14445/22315373/ijmtt-v67i11p501.
- E. Fitria, S. Gemawati, and R. Jemila Nurbai, "GENERALISASI t-DERIVASI DI B-ALJABAR GENERALITATION OF t-DERIVATION ON B-ALGEBRA."