KESTABILAN TITIK KESEIMBANGAN MODEL DUA PEMANGSA SATU MANGSA DENGAN KRITERIA ROUTH-HURWITZH
Abstract
Tulisan ini membahas kestabilan titik equilibrium model dua pemangsa satu mangsa dengan mengunakan kriteria kestabilan Routh-Hurtwizt. Simbiosis komensalisme diasumsikan berlaku di antara dua pemangsa. Studi kepustakaan adalah metode yang digunakan dalam menghasilkan tulisan ini. Model dua pemangsa satu mangsa mempunyai dua titik equilibrium yaitu
tidak stabil dan
yang stabil lokal.
Abstract
This paper discusses the stability of the equilibrium point of two predator one prey model using the Routh-Hurtwizt criteria. Commensalism symbiosis is assumed to apply to predators. The findings in this study resulted from a literature review.This model is known to have two equilibrium points, namely unstable
and local stable
.
Keywords
Full Text:
PDFDOI: https://doi.org/10.15548/map.v2i1.1642
Abstract views : 395 times
PDF : 778 times
References
Arrowsmith, D.K., Place, C.M., 1992, Dynamical System Differential Equations, Maps and Chaotic Behaviour, Chapman & Hall, London.
Boyce, W. E & DePrima R.C. 1992, ”Elementary Differential Equations and Boundary Value Problem”, 5th edition, Jhon Wiley & Sons.
Brauer, F. and Castilo-Chavez, C., 2001, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, Inc., New York.
Haberman, Richard., 1977, Mathematical Models, mechanical Vibrations, Population Dynamics, and Traffic flow, Prentice Hall, New jersey.
Khalil, H. Hassan., 2002, Nonlinear System, Third Edition, Prentice Hall, New Jersey.
Kocak, H. dan Hole, J. K., 1991. Dynamic and Bifurcation, Springer – Verlag. New York.
Ladas, Finizio. 1988, “Persamaan Difensial Biasa dengan Penerapan Modern”. Terjemahan. Dra. Widiarti Santoso. Edisi II. Erlangga. Jakarta.
Luenberger, D. G., 1979, Introduction to Dynamical System Theory, Model and Application, John Willey & Son, Inc., Canada
Mullen, A. J. 1984, “Autonomic Tuning of a Two Predator-One Prey System Via Commensalism”. Mathematical Biosciences.
Olsder, G. J, 1994, Mathematical System Theory, Delft University of Technology, Netherlands
Pielow, E.C. 1977, “Mathematical Ecology”. A. Wiley-Interscience Publication. John Wiley and Sons. New York.
Perko, L., 1991, Differential Equations and Dynamical System, Springer-Verlag, New York.
Verhulst, F., 1990, Nonlinear Differential Equations and Dynamical System, Springer-Verlag, Germany.
Wiggins, S., 1990, Introduction to Applied Nonlinear Dynamical System and Chaos, Springer-Verlag, New York
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.