METODE SCREENING KOLMOGOROV-SMIRNOV UNTUK DATA SURVIVAL BERDIMENSI TINGGI

Syarto Musthofa, Danardono Danardono

Abstract


Ada banyak metode screening variabel yang bisa menangani data berdimensi tinggi. Beberapa dari metode tersebut bisa mengurangi dimensi data secara efektif dan menjamin semua variabel aktif tetap muncul dengan probabilitas tinggi. Namun, kebanyakan prosedur screening yang ada saat ini dikembangkan hanya untuk data lengkap berdimensi tinggi dan tidak layak diterapkan pada data survival dengan informasi tersensor. Metode Screening Kolmogorov-Smirnov dapat dimodifikasi untuk mengatasi masalah ini dengan mengganti fungsi distribusi kumulatif dengan fungsi survival yang diestimasi dengan estimator Kaplan-Meier. Metode ini dapat bekerja dengan berbagai tipe kovariat baik itu kontinu, diskrit, maupun kategorikal. Performa dari metode ini diukur berdasarkan studi simulasi. Suatu contoh data riil mengenai ekspresi gen juga digunakan sebagai aplikasi dari metode ini.


Keywords


Metode screening; data berdimensi tinggi; data survival

Full Text:

PDF


DOI: https://doi.org/10.15548/map.v3i1.2779
Abstract views : 549 times
PDF : 257 times

References


R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R. Stat. Soc. Ser. B, vol. 58, no. 1, pp. 267–268, 1996, doi: 10.1017/s0272503700054525.

J. Fan and R. Li, “Variable Selection via Nonconcave Penalized,” J. Am. Stat. Assoc., vol. 96, no. 456, pp. 1348–1360, 2001.

H. Zou, “The adaptive lasso and its oracle properties,” J. Am. Stat. Assoc., vol. 101, no. 476, pp. 1418–1429, 2006, doi: 10.1198/016214506000000735.

E. Candes and T. Tao, “The Dantzig selector: Statistical estimation when p is much larger than n,” Ann. Stat., vol. 35, no. 6, pp. 2313–2351, 2007, doi: 10.1214/009053606000001523.

C. H. Zhang, Nearly unbiased variable selection under minimax concave penalty, vol. 38, no. 2. 2010.

Y. Liu, J. Zhang, and X. Zhao, “A new nonparametric screening method for ultrahigh-dimensional survival data,” Comput. Stat. Data Anal., vol. 119, pp. 74–85, 2018, doi: 10.1016/j.csda.2017.10.003.

J. Fan and J. Lv, “Sure independence screening for ultrahigh dimensional feature space,” J. R. Stat. Soc. Ser. B Stat. Methodol., vol. 70, no. 5, pp. 849–911, 2008, doi: 10.1111/j.1467-9868.2008.00674.x.

J. Fan and R. Song, “Sure independence screening in generalized linear models with NP-dimensionality,” Ann. Stat., vol. 38, no. 6, pp. 3567–3604, 2010, doi: 10.1214/10-AOS798.

Q. Mai and H. Zou, “The Kolmogorov filter for variable screening in high-dimensional binary classification,” Biometrika, vol. 100, no. 1, pp. 229–234, 2013, doi: 10.1093/biomet/ass062.

Q. Mai and H. Zou, “The fused Kolmogorov filter: A nonparametric model-free screening method,” Ann. Stat., vol. 43, no. 4, pp. 1471–1497, 2015, doi: 10.1214/14-AOS1303.

R. D. Cook and X. Zhang, “Fused estimators of the central subspace in sufficient dimension reduction,” J. Am. Stat. Assoc., vol. 109, no. 506, pp. 815–827, 2014, doi: 10.1080/01621459.2013.866563.

Danardono, Analisis Data Survival. Yogyakarta: FMIPA UGM, 2012.

R. Bender, T. Augustin, and M. Blettner, “Generating survival times to simulate Cox proportional hazards models,” Stat. Med., vol. 24, no. 11, pp. 1713–1723, 2005, doi: 10.1002/sim.2059.

R. Li, W. Zhong, and L. Zhu, “Feature screening via distance correlation learning,” J. Am. Stat. Assoc., vol. 107, no. 499, pp. 1129–1139, 2012, doi: 10.1080/01621459.2012.695654.

A. Rosenwald et al., “The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma,” Cancer Cell, vol. 3, no. 2, pp. 185–197, 2003, doi: 10.1016/S1535-6108(03)00028-X.

R. Panthong and A. Srivihok, “Wrapper Feature Subset Selection for Dimension Reduction Based on Ensemble Learning Algorithm,” Procedia Comput. Sci., vol. 72, pp. 162–169, 2015, doi: 10.1016/j.procs.2015.12.117.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Lisensi Creative Commonsis licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.