### INVERS MOORE-PENROSE SEBAGAI REPRESENTASI MATRIKS PROYEKSI ORTHOGONAL

#### Abstract

#### Keywords

#### Full Text:

PDFDOI: https://doi.org/10.15548/map.v5i1.6187

Abstract views : 234 times

PDF : 86 times

#### References

J. L. Goldberg, Matrix Theory With Applications. United State of America: McGraw-Hill College, 1991.

A. Ben-Israel, “The Moore of the Moore-Penrose inverse,” Electronic Journal of Linear Algebra, vol. 9, pp. 150–157, 2002, doi: 10.13001/1081-3810.1083.

M. A. Rakha, “On the Moore-Penrose generalized inverse matrix,” Appl Math Comput, vol. 158, no. 1, pp. 185–200, Oct. 2004, doi: 10.1016/j.amc.2003.09.004.

C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications. New York: John Wiley & Son, 1971.

T. Britz, “The inverse of a non-singular free matrix,” Linear Algebra Appl, vol. 338, pp. 245–249, 2001.

T. Britz, “The Moore-penrose inverse of a free matrix,” Electronic Journal of Linear Algebra, vol. 16, pp. 208–215, 2007, doi: 10.13001/1081-3810.1196.

J.-M. Miao, “General Expressions for the Moore-Penrose Inverse of a 2 x 2 Block Matrix,” Linear Algebra Appl, pp. 1–15, 1991.

A. R. Manikandan and C. A. Kumar, “The Moore Penrose Inverse and Spectral Inverse of Fuzzy Matrices,” 2021.

S. Chountasis, V. N. Katsikis, and D. Pappas, “Applications of the Moore-Penrose inverse in digital image restoration,” Math Probl Eng, vol. 2009, 2009, doi: 10.1155/2009/170724.

H. Yanai, K. Takeuchi, and Y. Takane, Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. New York: Springer, 2011.

S. Srivastava and D. K. Gupta, “AN ITERATIVE METHOD FOR ORTHOGONAL PROJECTIONS OF GENERALIZED INVERSES,” Journal of applied mathematics & informatics, vol. 32, no. 1_2, pp. 61–74, Jan. 2014, doi: 10.14317/jami.2014.061.

J. M. Mwanzia, M. Kavila, and J. M. Khalagai, “Moore-Penrose inverse of linear operators in Hilbert space,” African Journal of Mathematics and Computer Science Research, vol. 15, no. 2, pp. 5–13, Nov. 2022, doi: 10.5897/ajmcsr2022.0919.

E. Bozzo, “The Moore-Penrose inverse of the normalized graph Laplacian,” Linear Algebra Appl, vol. 439, no. 10, pp. 3038–3043, Nov. 2013, doi: 10.1016/j.laa.2013.08.039.

S. Ling and C. Xing, Coding Theory: A First Course. New York: Cambridge University Press, 2004.

H. Anton, Aljabar Linear Elementer Edisi Kelima. Jakarta: Erlangga, 1987.

H. Anton and C. Rorres, Aljabar Linear Elementer Versi Aplikasi Edisi Kedelapan. Jakarta: Erlangga, 2004.

S. Roman, Advance Linear Algebra, 2nd ed. New York: Springer, 2005.

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.