Prediksi Kesiapan Kerja Mahasiswa menggunakan Algoritme K-Means dan C4.5

Hendri Noviyanto, Bayu Mukti

Abstract


Student work readiness is quite influential on the existence of a university. The waiting time required by students to get a job can affect the mentality of students and the value of higher education from the assumptions of society. This will greatly affect the interest of parents or prospective students to continue their education at universities that have a bad image. Therefore, predictions of student work readiness before graduation are needed for consideration by higher education institutions to overcome the problem of waiting time for student work after graduation. The source of this research data is obtained from the Surakarta University database by utilizing alumni data from tracer studies as train data and 6-semester active student data as test data. The initial step taken is preprocessing to eliminate noise that can interfere with or affect the final result. The research method that will be used is to implement the K-Means and C4.5 algorithms for grouping and prediction processes. The data train used is 150 data and the testing data is 59 data. The results obtained by the K-Means algorithm can cluster 143 data correctly by comparing with the original data. The best cluster value obtained is K = 3. 

Keywords


:Data Mining; K-Means; C4.5; Prediction; Working Readiness.

Full Text:

PDF


DOI: https://doi.org/10.15548/jostech.v2i2.4422
Abstract views : 91 times
PDF : 57 times

References


H. Noviyanto and B. Mukti, “Period Study Accuracy Prediction using Sequential Minimal Optimization Algorithm,” Sink. J. dan Penelit. Tek. Inform., vol. 5, no. 1, pp. 164–169, 2020, [Online]. Available: https://jurnal.polgan.ac.id/index.php/sinkron/article/view/10621.

S. Agarwal, Data mining: Data mining concepts and techniques. 2014.

D. I. Purnama, R. L. Islami, L. Sari, and P. R. Sihombing, “Analisis Klasifikasi Data Tracer Study Dengan Support Vector Machine Dan Neural Network,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 2, pp. 46–52, 2021, doi: 10.47970/siskom-kb.v4i2.191.

I. M. B. Adnyana, “Implementasi Naïve Bayes Untuk Memprediksi Waktu Tunggu Alumni Dalam Memperoleh Pekerjaan,” Semin. Nas. Teknol. Komput. Sains, vol. 1, no. 1, pp. 131–134, 2020, [Online]. Available: http://prosiding.seminar-id.com/index.php/sainteks/article/view/418.

Ristekdikti, Undang-Undang Republik Indonesia Nomor 12 Tahun 2012 Tentang Pendidikan Tinggi. Jakarta: Ristekdikti, 2016.

F. Rezkika, B. N. Sari, and A. Susilo, “Klasifikasi Masa Tunggu Alumni Untuk Mendapatkan Pekerjaan Menggunakan Algoritma C4 . 5,” Progresif J. Ilm. Komput., vol. Vol. 17, pp. 95–106, 2021.

R. Cahyaningtyas, L. Luqman, and Y. I. H, “Klasifikasi Kompetensi Alumni Berdasarkan Masa Tunggu Alumni untuk Mendapatkan Pekerjaaan Menggunakan Metode Agoritma C4.5,” Kilat, vol. 9, no. 2, pp. 297–310, 2020, [Online]. Available: https://stt-pln.e-journal.id/kilat/article/view/950.

A. Widhiantoyo, “Penerapan Algoritma Naïve Bayes Dengan Backward Elimination Untuk Prediksi Waktu Tunggu Alumni Mendapatkan Pekerjaan,” JIKO (Jurnal Inform. dan Komputer), vol. 4, no. 3, pp. 145–151, 2021, doi: 10.33387/jiko.v4i3.3272.

A. J. Kehinde, A. E. Adeniyi, and R. O. Ogundokun, “Prediction of Students ’ performance with Artificial Neural Net- work using Demographic Traits,” pp. 1–10.

V. K. Pal and V. K. K. Bhatt, “Performance prediction for post graduate students using artificial neural network,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 7, pp. 446–454, 2019.

Y. Tampil, H. Komaliq, and Y. Langi, “Analisis Regresi Logistik Untuk Menentukan Faktor-Faktor Yang Mempengaruhi Indeks Prestasi Kumulatif (IPK) Mahasiswa FMIPA Universitas Sam Ratulangi Manado,” d’CARTESIAN, vol. 6, no. 2, p. 56, 2017, doi: 10.35799/dc.6.2.2017.17023.

F. N. R. F. Aziz, B. D. Setiawan, and I. Arwani, “Implementasi Algoritma K-Means untuk Klasterisasi Kinerja Akademik Mahasiswa,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 6, pp. 2243–2251, 2018.

H. Priyatman, F. Sajid, and D. Haldivany, “Klasterisasi Menggunakan Algoritma K-Means Clustering untuk Memprediksi Waktu Kelulusan Mahasiswa,” J. Edukasi dan Penelit. Inform., vol. 5, no. 1, p. 62, 2019, doi: 10.26418/jp.v5i1.29611.

S. Suryadi, “Penerapan Metode Clustering K-Means Untuk Pengelompokan Kelulusan Mahasiswa Berbasis Kompetensi,” J. Inform., vol. 6, no. 1, pp. 52–72, 2019, doi: 10.36987/informatika.v6i1.738.

Y. Amri, “Metode k-means untuk clustering mahasiswa berdasarkan nilai akademik,” vol. XV, no. 02, 2021.

D. R. Utari and F. Sofiani, “Klasterisasi Lulusan Pendidikan Tinggi Vokasi Berbasis Hasil Studi Pelacakan Menggunakan Algoritma K-Means,” J. Serasi, vol. 19, no. September, 2021, [Online]. Available: https://journal.budiluhur.ac.id/index.php/serasi/article/view/1543%0Ahttps://journal.budiluhur.ac.id/index.php/serasi/article/download/1543/1034.

V. Virtusena, A. Johar, and A. Wijanarko, “Pengelompokan Potensi Kelulusan Mahasiswa Fakultas Teknik Unib Menggunakan Algoritma K- Means,” vol. 9, no. 2, 2021.

E. T. Lau, L. Sun, and Q. Yang, “Modelling, prediction and classification of student academic performance using artificial neural networks,” SN Appl. Sci., vol. 1, no. 9, pp. 1–10, 2019, doi: 10.1007/s42452-019-0884-7.

B. G. Sudarsono and S. P. Lestari, “Clustering Penerima Beasiswa Yayasan Untuk Mahasiswa Menggunakan Metode K-Means,” J. Media Inform. Budidarma, vol. 5, no. 1, p. 258, 2021, doi: 10.30865/mib.v5i1.2670.

W. Ian H and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2 Edition. San Fransisco: Elsevier Inc., 2005.

S. Yunita and Nurahman, “Metode Klasifikasi Data Mining Algoritma C4.5 dan Part untuk Prediksi Waktu Kelulusan Mahasiswa di Universitas Darwan Ali,” Teknol. infotek J. Inform. dan Teknol., vol. 3, no. 9, pp. 1–7, 2020.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 JOSTECH: Journal of Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.