Ethnomathematics Pada Ornamen Rumah Gadang Minangkabau

Rozi Fitriza

Abstract


The mathematical concept on cultural objects is one of the objects of study in the study of ethnomathematics. This study aims to uncover mathematical concepts in the ornaments found in the rumah gadang and the development of ornaments. This qualitative research uses participatory observation techniques and documentation to obtain data. The results showed that there were geometrical concepts in the ornaments and the development of the rumah gadang ornaments. The concepts of geometry seen in ornaments include the use of two-dimensional such as square, rectangular, rhombic, circle, ellipse and polygons. Two-dimensional shape are also arranged using certain patterns. The development of ornament forms is carried out using the principles of congruence, tessellation, symmetry patterns and geometric transformations (translation, reflection, rotation, and dilation). The results of this study can be used as a reference for teachers in mathematics learning and ethnomathematics research on cultural objects.

Keywords: ethnomathematics, ornaments of rumah gadang


Full Text:

PDF


DOI: https://doi.org/10.15548/mej.v2i2.187
Abstract views : 649 times
PDF : 1106 times

References


A.M.Y Dt. Garang, H. A. (1983). Pengetahuan Ragam Hias Minangkabau. Jakarta: Dirjen Pendidikan Dasar dan Menengah Depatemen Pendidikan dan Kebudayaan.

Barton, W. . (1996). Ethnomathematics :Exploring Cultural Diversity in

Mathematics. University of Auckland.

Bishop, A. J. (1997). Mathematical Enculturation: A Cultural Perspective on mathematics Education (Third). The Netherlands: Kluwer Academic Publishers.https://doi.org/10.1007/978-94-009-2657-8

Creswell, J, W. (2009). Research Design:Qualitative, Quantitative, and Mixed Methods Approaches. 3rd Edition. Los Angeles: SAGE Publications, Inc.

D'Ambrosio, U. (2001). What is ethnomathematics, and how can it help

children in schools? Teaching Children Mathematics , 308.

Fauziah & Niniwati. (2017). Ethno-mathematics Exploration on the Carvings of Rumah Gadang in South Solok Regency of West Sumatera. IJRDO-Journal of Educational Research , 134-148.

Fitriza, R., (2018). Studi Ethnomathematics Pada Arsitektur Tradisional Rumah Gadang Sumatera Barat dan Penerapannya Dalam Pembelajaran Matematika Di Sekolah. Bandung: Disertasi, Universitas Pendidikan Indonesia.

Haryanto, T. S, Nusantara, Subanji & Abadyo. (2016). Ethnomathematics in Arfak (West Papua-Indonesia): Hidden Mathematics on knot of Rumah Kaki Seribu. Academic Journals , 420-425.

Hasni, S. (1999). Ukiran Tradisional Minangkabau. Padang: Depdikbud, Direktorat Jenderal Kebudayaan.

Helsa, Y., & Hartono, Y. (2011). Designing Reflection and Symmetry Learning by Using Math Traditional Dance in Primary School. IndoMs – JME, 2(1), 79 – 94.

Jurgensen, R. B, Brown, R.G & King, A. M.(1983). Geometry. Boston: Houghton Mifflin Company.

Khaira, K. (2017). Study of Ethnomathematics: Investigasi Ide Matematis Pada Ukiran Rumah Adat Tradisional Minangkabau. Bandung: Skipsi: UPI.

Massarwe, K.I. (2010). An Ethnomathematics Exercises in Analyzing and Constructing Ornaments in a Geometry Class. Journal of Mathematics and Culture, 5(1).

Navis, A. (2015). Alama Takambang Jadi Guru: Adat dan Kebudayaan Minangkabau.Padang: PT Grafika Jaya Sunmbar.

Rosa, M. & Orey, D.C. (2009). Symmetrical Freedom Quilts: The Ethnomathematics of Way of Communication, Liberation, and Art. Revista Latinoamericana de Etnomatematica, 2(2), 52-75

Soeroto, M. (2005). Pustaka Budaya dan Arsitektur: Minangkabau. Jakarta: Myrtle Publishing.

Syamsidar. (1991). Arsitektur Tradisional Daerah Sumatera Barat. Jakarta: Depdikbud, Direktorat Jendral Kebudayaan Direktorat sejarah dan Nilai Tradisional Proyek Inventarisasi dan Pembinaan Nilai-nilai Budaya.


Refbacks

  • There are currently no refbacks.




Ruang Jurnal Program Studi Tadris Matematika
Fakultas Tarbiyah dan Keguruan
Universitas Islam Negeri Imam Bojol Padang
email: mej.uinibpadang@gmail.com

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.