PENERAPAN METODE SUPPORT VECTOR MACHINE DALAM KLASIFIKASI INDEKS PEMBANGUNAN MANUSIA DI SUMATERA UTARA

Aulia Lia Yusharsah, Sajaratud Dur, Hendra Cipta

Abstract


The human development index in 2020 get slowdown in growth of 0.04%. The problem becaused per capita expenditure has decreased due to the COVID-19 pandemic. The purpose of this research is to implementation of a classification method used in the classification of the human development index in North Sumatra Province in 2020 and find out the accuracy value obtained. In implementation of support vector machine method with the Radial Basic Function (RBF) kernel function got the accuracy value is enough good at 79.31% with parametersC=1. 

The human development index in 2020 get slowdown in growth of 0.04%. The problem becaused per capita expenditure has decreased due to the COVID-19 pandemic. The purpose of this research is to implementation of a classification method used in the classification of the human development index in North Sumatra Province in 2020 and find out the accuracy value obtained. In implementation of support vector machine method with the Radial Basic Function (RBF) kernel function got the accuracy value is enough good at 79.31% with parametersC=1, .

Keywords


Human Development Index, Support Vector Machine, Radial Basic Function (RBF)

Full Text:

PDF


DOI: https://doi.org/10.15548/mej.v6i1.3841
Abstract views : 114 times
PDF : 30 times

References


Duli, N. (2019). Metodologi penelitian kuantitatif beberapa konsep dasar untuk penulisan skripsi dan analisis data dengan SPPS. Deepublish.

Fauzi, F. (2017). K-Nearset Neighbor (K-NN) dan Support Vector Machine (SVM) untuk klasifikasi indeks pembangunan manusia Provinsi Jawa Tengah. Jurnal Mipa, 40(2), 118–124.

Kusumah, R. D., Warsito, B., & Mukid, M. A. (2017). Perbandingan metode K-Means dan Self Organizing Map (Studi Kasus: pengelompokan Kabupaten/Kota di Jawa Tengah berdasarkan indikator indeks pembangunan manusia 2015). Jurnal Gaussian, 6(3), 429–437. http://ejournal-s1.undip.ac.id/index.php/gaussian

Sari, E. A., Saragih, M. T. B., Shariati, I. A., Sofyan, S., Baihaqi, R. A., & Nooraeni. (2020). Klasifikasi kabupaten tertinggal di kawasan timur Indonesia dengan support vector machine. JIKO (Jurnal Informatika Dan Komputer), 3(3), 188–195. https://doi.org/10.33387/jiko.v3i3.2364

Wiyanti, A., Tanzil, F., & Sigit, A. (2018). Penerapan algoritme support vector machine terhadap klasifikasi tingkat rasiko pasien gagal ginjal. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(10).


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Ruang Jurnal Program Studi Tadris Matematika
Fakultas Tarbiyah dan Keguruan
Universitas Islam Negeri Imam Bojol Padang
email: mej.uinibpadang@gmail.com

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.