PENERAPAN METODE SUPPORT VECTOR MACHINE DALAM KLASIFIKASI INDEKS PEMBANGUNAN MANUSIA DI SUMATERA UTARA
Abstract
The human development index in 2020 get slowdown in growth of 0.04%. The problem becaused per capita expenditure has decreased due to the COVID-19 pandemic. The purpose of this research is to implementation of a classification method used in the classification of the human development index in North Sumatra Province in 2020 and find out the accuracy value obtained. In implementation of support vector machine method with the Radial Basic Function (RBF) kernel function got the accuracy value is enough good at 79.31% with parametersC=1.
The human development index in 2020 get slowdown in growth of 0.04%. The problem becaused per capita expenditure has decreased due to the COVID-19 pandemic. The purpose of this research is to implementation of a classification method used in the classification of the human development index in North Sumatra Province in 2020 and find out the accuracy value obtained. In implementation of support vector machine method with the Radial Basic Function (RBF) kernel function got the accuracy value is enough good at 79.31% with parametersC=1, .Keywords
Full Text:
PDFReferences
Duli, N. (2019). Metodologi penelitian kuantitatif beberapa konsep dasar untuk penulisan skripsi dan analisis data dengan SPPS. Deepublish.
Fauzi, F. (2017). K-Nearset Neighbor (K-NN) dan Support Vector Machine (SVM) untuk klasifikasi indeks pembangunan manusia Provinsi Jawa Tengah. Jurnal Mipa, 40(2), 118–124.
Kusumah, R. D., Warsito, B., & Mukid, M. A. (2017). Perbandingan metode K-Means dan Self Organizing Map (Studi Kasus: pengelompokan Kabupaten/Kota di Jawa Tengah berdasarkan indikator indeks pembangunan manusia 2015). Jurnal Gaussian, 6(3), 429–437. http://ejournal-s1.undip.ac.id/index.php/gaussian
Sari, E. A., Saragih, M. T. B., Shariati, I. A., Sofyan, S., Baihaqi, R. A., & Nooraeni. (2020). Klasifikasi kabupaten tertinggal di kawasan timur Indonesia dengan support vector machine. JIKO (Jurnal Informatika Dan Komputer), 3(3), 188–195. https://doi.org/10.33387/jiko.v3i3.2364
Wiyanti, A., Tanzil, F., & Sigit, A. (2018). Penerapan algoritme support vector machine terhadap klasifikasi tingkat rasiko pasien gagal ginjal. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(10).
DOI: https://doi.org/10.15548/mej.v6i1.3841
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Math Educa Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Ruang Jurnal of the Mathematics Education Department
Faculty of Education and Teacher Training
State Islamic University of Imam Bonjol Padang
Jl. Prof. Mahmud Yunus Lubuk Lintah, Anduring, Kec. Kuranji, Kota Padang, Sumatera Barat 25153
Email: mej.uinibpadang@gmail.com