PREDIKSI JUMLAH PENUMPANG PESAWAT PADA MASA COVID-19 DENGAN METODE EXPONENTIAL SMOOTHING

Darvi Mailisa Putri, Fitri Rahmah Ul Hasanah, Lilis Harianti Hasibuan, Miftahul Jannah

Abstract


Forecasting is a study that is still interesting today. With the forecasting method, a person can make predictions about something based on previously available data. In this study, will be carried out on the prediction of the number of airplane passengers on domestic during the COVID-19 period. The data taken is data on domestic airplane passengers at Minangkabau International Airport Padang city. Data by month for the period 2016 to 2020. The method that will be applied to the data is the exponential smoothing type forecasting method, especially the Single Exponential Smoothing (SES) and Double Exponential Smoothing (DES) methods. The results of the study concluded that if analyzed from the MAPE value, the DES method was better with a MAPE value of 77. However, if analyzed from the MAD and MSD values, the SES method was better with a value of 32609 and 2044501652, respectively. Furthermore, analyzing the prediction results of the two methods, it was obtained that for the first four months the DES method showed better results than the SES method. But two months later the SES method was much better.

Keywords


prediction, single exponential smoothing, double exponential smoothing

Full Text:

PDF


DOI: https://doi.org/10.15548/mej.v6i1.3896
Abstract views : 43 times
PDF : 15 times

References


Abonazel, M. R., & Abd-Elftah, A. I. (2019). Forecasting egyptian GDP using ARIMA models. Reports on Economics and Finance, 5(1), 35–47. https://doi.org/10.12988/ref.2019.81023

Agustini, F., Affianti, I. R., & Putri, R. M. (2018). Stock price prediction using geometric Brownian motion. Journal of Physics: Conference Series, 974(1), 012047. https://doi.org/10.1088/1742-6596/974/1/012047

Ariyanto, R. (Rudy), Puspitasari, D. (Dwi), & Ericawati, F. (Fifi). (2017). Penerapan Metode Double Exponential Smoothing pada Peramalan Produksi Tanaman Pangan. Jurnal Informatika Polinema, 4(1), 266791. https://doi.org/10.33795/JIP.V4I1.145

Fattah, Jamal., D. (2018). Forecasting of demand using ARIMA model. https://journals.sagepub.com/doi/abs/10.1177/1847979018808673

Hakimah, M., Mistarika Rahmawati, W., Yuldian Afandi, A., Teknik Informatika, J., Teknik Elektro Dan Teknologi Informasi, F., & Teknologi Adhi Tama Surabaya Jl Arief Rachman Hakim, I. (2020). Pengukuran kinerja metode peramalan tipe eksponential smoothing dalam parameter terbaiknya. Network Engineering Research Operation, 5(1), 44–50. https://doi.org/10.21107/NERO.V5I1.150

Halim, S. (2006). Diktat time series analysis.

Hernandez-Matamoros, A., Fujita, H., Hayashi, T., & Perez-Meana, H. (2020). Forecasting of COVID19 per regions using ARIMA models and polynomial functions. Applied Soft Computing, 96, 106610. https://doi.org/10.1016/J.ASOC.2020.106610

Najah Hamdan, Z., Nur, S., Ibrahim, I., & Mustafa, M. S. (2020). Modelling Malaysian gold prices using geometric brownian motion model. JOURNAL Advances in Mathematics: Scientific Journal, 9(9), 1857–8438. https://doi.org/10.37418/amsj.9.9.92

Putri, D. M., & Aghsilni, A. (2019). Estimasi model terbaik untuk peramalan harga saham PT. Polychem Indonesia Tbk. dengan ARIMA. MAp (Mathematics and Applications) Journal, 1(2), 1–12. https://doi.org/10.15548/MAP.V1I2.1176

Putri, D. M., & Hasibuan, L. H. (2020). Penerapan gerak brown geometrik pada data saham PT. ANTM.

Raharja, A., Angraeni, W., Si, S., Kom, M., Vinarti, R. A., & Kom, S. (2008). Penerapan metode exponential smoothing untuk peramalan penggunaan waktu telpondi PT.Telkomsel Divre3 Surabaya.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Ruang Jurnal Program Studi Tadris Matematika
Fakultas Tarbiyah dan Keguruan
Universitas Islam Negeri Imam Bojol Padang
email: mej.uinibpadang@gmail.com

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.