Analisis Vibrating Sample Magnetometer (VSM) Pada Hasil Elektrodeposisi Lapisan Tipis MagnetiteMenggunakan Aruscontinue Direct Current

sylvina Tebriani


A magnetite (Fe3O4) thin film was grown on the Indium Thin Oxide (ITO) substrate by the Electrodeposition (ED) method, using the Continue Direct Current (CDC). Characterization with VSM is done to obtain information about the magnitudes of magnetic properties as a result of changes in the external magnetic field depicted in the hysteresis curve. VSM characterization results showed that the electrodepositioned magnetite thin films were paramagnetic, both for electrolyte solutions without ethylene glycol and electrolyte solutions that were dropped by ethylene glycol. Based on the comparison of the hysterisis pattern between samples that were characterized without surfactants, or those added with 10% surfactant to their solvents, it was said that the addition of ethylene glycol to base solution, affected the response of the material to the given external magnetic field. Samples with surfactants 10% have a greater slope than samples without surfactants, in other words samples without surfactants (by heating) are faster magnetized compared to the addition of surfactants.


Magnetite, Elektrodeposisi, Vibrating Sample Magnetometer (VSM)


Abdullah, M, 2009, Pengantar Nanosains, Bandung, ITB

Afandi, S., 2006. Sintesa dan Karakterisasi Partikel Magnetik Submikron Berbasis Oksida Fe dan Polimer Polilaktat (PLA). Institut Pertanian Bogor, Bogor.

Billah. A., 2006, Pembuatan dan Karakterisasi Magnet Stronsium Ferit dengan Bahan Dasar Pasir Besi, Universitas Negeri Semarang.

Butler, R. F. 1992, Paleomagnetism: Magnetik Domains to Geologic Teranes. Boston: Blackwell Scientific Publications.

Chumming, J. and Xiangqin, L.,2009, Electrochemical Synthesis of Fe3O4-PB Nanoparticles with Core-Shell Structure and its Electrocatalytic Reduction Toward H2O2, J. Solid State Electrochem. 13: 1273-1278.

Eken, A.E., 2008, CharacterizationofMagnetiteThinFilmsProducedbySol-GelProcessing, Metallurgical and Materials Engineering Department, Middle East Technical University.

Gaihre, B., Khil, M.S., Lee, D.R., Kim, H.Y., 2009, Gelatin-coated Magnetic Iron Oxide Nanoparticles as Carrier System: Drug Loading and In Vitro Drug Release Study, Inter. J. Pharm. 365: 180-189.

Hunt, C. P., 1991, Handbook From The Environmental Magnetism Workshop. Minneapolis: University Of Minnesota.

Jia, X., Tan, L., Zhou, Y., Jiang, X., Xie, Q., Tang, H., Yao, S., 2009, Magnetic Immobilization and Electrochemical Detection of Leukemia K562 Cells,Electrochem. Commun. 11: 141-144.

Liu, T.Y., Hu, S.H., Liu, D.M., Chen, S.Y., Chen, I.W.,2009, Biomedical Nanoparticle Carriers with Combined Thermal and Magnetic Responses, NanoToday 4: 52-65.

Loeksmanto, W (1993), Medan Elektromagnetik. Jakarta: Departemen Pendidikan dan Kebudayaan Dirjen Pendidikan Tinggi.

Siyambalapitiya, Chamila S., 2006, Growth And Physical Properties of Magnetite Thin Films,Graduate School Theses and Dissertations. Paper 2705.

Sulistijo, Budi, Sumardi, Darmawan., Heriawan, Nur, Riyanto, Yana Rahmat., 2002, Geofisika Cebakan Mineral II. Penerbit ITB. Bandung.

Yulianto, A. Bijaksana S, Loeksmanto W. (2002), Karakterisasi Magnetik dari Pasir Besi Cilacap. Jurnal Himpunan Fisika Indonesia vol. A5 no. 0527.

Sumarlin., 2011. Material Magnetik Dasar Superparamagnetik. Universitas Hauluoleo, Kendari.

Tebriani, S., 2013, Analisa Pengaruh Tegangan Terhadap Hasil Elektrodeposisi Lapisan Tipis Magnetite Menggunakan Arus Continue Direct Current. Universitas Islam Negeri Imam Bonjol, Padang.

Full Text: PDF

DOI: 10.15548/nsc.v5i1.892


  • There are currently no refbacks.

Copyright (c) 2019 NATURAL SCIENCE: Jurnal Penelitian Bidang IPA dan Pendidikan IPA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.