Identification of 29 Types of Plant Diseases using Deep Learning EfficientNetB3
Abstract
Keywords
Full Text:
PDFReferences
and M. P. Dario Caldara, Sarah Conlisk, Matteo Iacoviello, “The Effect of the War in Ukraine on Global Activity and Inflation,” https://www.federalreserve.gov/, 2022. https://www.federalreserve.gov/econres/notes/feds-notes/the-effect-of-the-war-in-ukraine-on-global-activity-and-inflation-20220527.htm
John Ciempa, “The benefits of sustainable agriculture and how we get there,” https://www.ibm.com/, 2021. https://www.ibm.com/blogs/internet-of-things/the-benefits-of-sustainable-agriculture-and-how-we-get-there/
M. R. Timaeus, J., Ruigrok, T., Siegmeier, T., & Finckh, “Adoption of Food Species Mixtures from Farmers’ Perspectives in Germany: Managing Complexity and Harnessing Advantages.,” Agric. Ecosyst. Environ., vol. 12, no. 5, p. 697, 2022.
H. Y. PAN, S. Q., QIAO, J. F., Rui, W. A. N. G., YU, H. L., Cheng, W. A. N. G., TAYLOR, K., & PAN, “Intelligent diagnosis of northern corn leaf blight with deep learning model,” J. Integr. Agric., vol. 21, no. 4, pp. 1094–1105, 2022.
S. Nagpal, P., Chaudhary, S., & Kumar, “Detection of Disease in Plants with Android Integration Using Machine Learning,” Int. Conf. Comput. Eng. Technol. Springer, Singapore., pp. 144–151, 2022.
S. Collinge, D. B., & Sarrocco, “Transgenic approaches for plant disease control: Status and prospects 2021,” Plant Pathol., vol. 71, no. 1, pp. 207–225, 2022.
T. Hasanaliyeva, G., Si Ammour, M., Yaseen, T., Rossi, V., & Caffi, “Innovations in Disease Detection and Forecasting: A Digital Roadmap for Sustainable Management of Fruit and Foliar Disease,” Agronomy, vol. 12, no. 7, p. 1707, 2022.
D. Couliably, S., Kamsu-Foguem, B., Kamissoko, D., & Traore, “Deep learning for precision agriculture: a bibliometric analysis,” Intell. Syst. with Appl., 2022.
W. Hastomo, “Klasifikasi Covid-19 Chest X-Ray Dengan Tiga Arsitektur Cnn (Resnet-152, Inceptionresnet-V2, Mobilenet-V2),” vol. 5, no. Dl, 2021.
W. Hastomo, “Convolution Neural Network Arsitektur Mobilenet-V2 Untuk Mendeteksi Tumor Otak,” vol. 5, no. Gambar 1, 2021.
W. Hastomo and S. Bayangkari, “Diagnosa Covid-19 Chest X-Ray Dengan Convolution Neural Network Arsitektur Resnet-152,” vol. 2, no. 1, pp. 26–33, 2021.
A. Satyo, B. Karno, W. Hastomo, Y. Efendi, and R. Irawati, “Arsitektur Alexnet Convolution Neural Network ( CNN ) Untuk Mendeteksi Covid-19 Image Chest-Xray,” pp. 482–485, 2021.
W. Hastomo, N. Aini, A. Satyo, B. Karno, and L. M. R. Rere, “Metode Pembelajaran Mesin untuk Memprediksi Emisi Manure Management,” vol. 11, no. 2, pp. 131–139, 2022.
R. Razfar, N., True, J., Bassiouny, R., Venkatesh, V., & Kashef, “Weed detection in soybean crops using custom lightweight deep learning models,” J. Agric. Food Res., vol. 8, 2022.
H. Peng, Y., Dallas, M. M., Ascencio-Ibáñez, J. T., Hoyer, J. S., Legg, J., Hanley-Bowdoin, L., ... & Yin, “Early detection of plant virus infection using multispectral imaging and spatial–spectral machine learning,” Sci. Reports Nat., vol. 12, no. 1, pp. 1–14, 2022.
V. B. Paymode, A. S., & Malode, “Transfer Learning for Multi-Crop Leaf Disease Image Classification using Convolutional Neural Network VGG,” Artif. Intell. Agric., vol. 6, pp. 23–33, 2022.
L. M. Tassis and R. A. Krohling, “Few-shot learning for biotic stress classification of coffee leaves,” Artif. Intell. Agric., vol. 6, pp. 55–67, 2022, doi: https://doi.org/10.1016/j.aiia.2022.04.001.
D. Wang, J. Wang, W. Li, and P. Guan, “T-CNN: Trilinear convolutional neural networks model for visual detection of plant diseases,” Comput. Electron. Agric., vol. 190, p. 106468, 2021, doi: https://doi.org/10.1016/j.compag.2021.106468.
X. Tang et al., “Deep6mAPred: A CNN and Bi-LSTM-based deep learning method for predicting DNA N6-methyladenosine sites across plant species,” Methods, vol. 204, pp. 142–150, 2022, doi: https://doi.org/10.1016/j.ymeth.2022.04.011.
B. Ahmad, A., Saraswat, D., Aggarwal, V., Etienne, A., & Hancock, “Performance of deep learning models for classifying and detecting common weeds in corn and soybean production systems,” Comput. Electron. Agric., vol. 184, p. 106081, 2021.
Q. Tan, M., & Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” Int. Conf. Mach. Learn., pp. 6105–6114, 2019.
S. M. Sakib, “Plant Disease Expert,” kaggle.com, 2022. https://www.kaggle.com/datasets/sadmansakibmahi/plant-disease-expert
W. Hastomo, A. S. Karno, S. Sutarno, D. Arif, & Moreta, E., and S. Sudjiran, “Mengatasi Ketimpangan Data Deep Neural Network dengan Pelipatan Fitur Data Klasifikasi Spektroskopi Darah,” J. Ilm., vol. 8, no. 2, pp. 579–591, 2022, doi: https://doi.org/10.35326/pencerah.v8i2.2251.
N. A. Alhichri, H., Alswayed, A. S., Bazi, Y., Ammour, N., & Alajlan, “Classification of remote sensing images using EfficientNet-B3 CNN model with attention,” IEEE Access, vol. 9, pp. 14078–14094, 2021.
Vardan Agarwal, “Complete Architectural Details of all EfficientNet Models,” Medium Toward Data Science, 2020. https://medium.com/towards-data-science/complete-architectural-details-of-all-efficientnet-models-5fd5b736142
C. O. Lee, Y., Park, J., & Lee, “Two-level group convolution.,” Neural Networks, 2022.
DOI: https://doi.org/10.15548/isrj.v2i02.4389
Refbacks
- There are currently no refbacks.
Gedung Fakultas Sains dan Teknologi
Kampus III Universitas Islam Negeri Imam Bonjol Padang
Sungai Bangek, Kec. Koto Tangah, Kota Padang, Sumatera Barat
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.