Keekivalenan Presentasi Grup 〈x,y|y^(-1) xyx,x^(-1) yxy〉 dan 〈x,y|〖x^4,x〗^2 y^(-2),x^(-1) yxy〉 menggunakan Transformasi Tietze
Abstract
Pada penelitian ini membahas tentang transformasi untuk dua presentasi grup berbeda yang mendefinisikan grup yang sama. Diberikan dua presentasi grup dan . Ditunjukkan bahwa dan adalah ekivalen atau isomorpis. Untuk menunjukan ini di gunakan transformasi tietze.
Full Text:
PDFReferences
Baik, Y. G. Harlander. 1998. “The Geometry of Group Extension J Group Theory.” In The Geometry of Group Extension J Group Theory, 395–416.
F, Miller III C. 2004. “Combinatorial Group Theory.” In Lecturer Notes.
Johnson, D.L. 1997. Presentation of Group.
Magnus, W Karras A and Solitary ( New York). 1976. “Combinatorial Group Theory : Presentation of Groups in Terms of Generator and Relation.” Dover Publication.
Pride, S. J. 1991. “Identities Among Relation of Groups Presentation, In Group Theory from Geometrical View Point-Triese.” World Sciencetific Publishing Co, 687–717.
Yanita dan Ahmad (Universitas Andalas). 2013. “Computing Generator of Second Homotopy Module Using Tietze Transformation Methods.” International of Journal of Contemporary and Mathematical Science 8 (15): 699–704.
DOI: https://doi.org/10.15548/jostech.v1i1.2369
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 JOSTECH: Journal of Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.