Penerapan Metode Newton Raphson untuk Pencarian Akar pada Fungsi Kompleks

Mohamad Syafii, Rahmi Ridhallah, Rizki Amalia Nur

Abstract


This study aims to compare analytical methods and numerical methods in determining the roots of equations of a complex function. The numerical method used in this research is the Newton Raphson method. In this study two examples of complex functions were given, after which the roots of the equation were searched using the analytical method and the Newton Raphson method, then the results were compared. In this study, two examples are given, namely and . In example one, three different roots were obtained analytically, while numerical calculations using the Newton Raphson method obtained a value that converged to one of the roots that had been obtained analytically. In example two, four different roots were obtained analytically, while numerically using the Newton Raphson method similarly if done using the Newton Raphson method, a value that converged to one of the roots that had been obtained analytically was obtained.

Keywords


Akar Persamaan, Fungsi Kompleks, Newton Raphson

Full Text:

PDF


DOI: https://doi.org/10.15548/jostech.v3i1.5685
Abstract views : 242 times
PDF : 197 times

References


M. K. Mahmul and Yudhi, “Modifikasi Metode Newton-Raphson Untuk Mencari Solusi Persamaan Linear Dan Nonlinear,” Bul. Ilm. Mat. Stat dan Ter., vol. 6, no. 02, pp. 69–76, 2017.

Rochmad, “Aplikasi Metode Newton Raphson Untuk Menghampiri Solusi Persamaan Non Linear,” J. MIPA, vol. 36, no. 2, pp. 193–200, 2013.

E. R. Wulan, S. M. Sukarti, and D. Zulkarnaen, “Perbandingan Tingkat Kecepatan Konvergensi dari Metode Newton Raphson dan Metode Secant Setelah Mengaplikasikan Metode Aiken ’ s dalam Perhitungan Akar Pangkat Tiga,” J. Mat. Integr., vol. 12, no. 1, pp. 35–42, 2016.

E. Sunandar and Indrianto, “Perbandingan Metode Newton-Raphson & Metode Secant Untuk Mencari Akar Persamaan Dalam Sistem Persamaan Non-Linier,” PETIR J. Pengkaj. dan Penerapan Tek. Inform., vol. 13, no. 1, pp. 72–79, 2020.

P. Batarius, “Perbandingan Metode Newton-Raphson Modifikasi Dan Metode Secant Modifikasi Dalam Penentuan Akar Persamaan,” Semin. Nas. Ris. dan Teknol. Terap. 8 (RITEKTRA 8), no. April, p. IK 53 – IK 64, 2018.

R. D. Estuningsih and T. Rosita, “NEWTON RAPHSON DALAM PENYELESAIAN PERSAMAAN NON LINEAR,” War. Akab Vol., vol. 43, no. 2, pp. 21–23, 2019.

P. Batarius, “Nilai Awal Pada Metode Newton Raphson yang Dimodifikasi dalam Penentuan Akar Persamaan,” Pi Math. Educ. J., vol. 1, no. 3, pp. 108–115, 2018.

M. R. Spiegel, Theory and Problems of Complex Variable. Singapore: McGraw-Hill Book Company, 1981.

F. Y. Solar, J. Titaley, and A. J. Rindengan, “Penerapan Geometri Fraktal Dalam Membuat Variasi Motif Batik Nusantara Berbasis Julia Set,” d’CartesiaN J. Mat. dan Apl., vol. 9, no. 2, pp. 189–193, 2021.

M. Syafi’i and M. R. Alghazali, “Hampiran Solusi Persamaan Gelombang Dua Dimensi dengan Pendekatan Finite Difference,” Jostech J. Sci. Technol., vol. 2, no. 1, pp. 23–30, 2022.

F. Dubeau and C. Gnang, “Fixed Point and Newton’s Method in the Complex Plane,” Hindawi J. Complex Anal., vol. 2018, no. 4, pp. 1–11, 2018.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.