Penerapan Model Seasonal Autoregressive Integrated Moving Average (SARIMA) pada Jumlah Penumpang Kereta Api di Sumatera Barat

Serly Cania, Darvi Mailisa Putri, Ilham Dangu Rianjaya

Abstract


This study aims to obtain a model and determine the best model of the results of the number of train passengers in West Sumatra using Seasonal Autoregressive Integrate Moving Average (SARIMA). The research data comes from secondary data obtained from PT.KAI (Persero) Regional Division II West Sumatra to see the number of train passengers with a time span of January 2017 to April 2020. The results showed that the best model obtained was SARIMA. Selection of the best model based on the smallest AIC value of several models that have been obtained through ACF and PACF plots. Based on the best model, the forecasting results are close to the actual data, so the SARIMA model is suitable for forecasting.

Keywords


Number of Train Passengers; SARIMA; Forecasting; Time Series

Full Text:

PDF


DOI: https://doi.org/10.15548/jostech.v3i2.6880
Abstract views : 171 times
PDF : 99 times

References


G. E. P. and Box, Time Series Analysis Forecasting and Control.

F. Dunia, W. Abdullah, and C. Sasongko, int t S en. 2019.

D. M. Putri and Aghsilni, “Estimasi Model Terbaik Untuk Peramalan Harga Saham PT. Polychem Indonesia Tbk Dengan Arima,” MAp J., vol. 1, no. 1, pp. 1–12, 2019.

A. Assidiq, P. Hendikawati, and N. Dwidayati, “Perbandingan Metode Weighted Fuzzy Time Series, Seasonal Arima, dan Holt-Winter’s Exponential Smoothng untuk Meramalkan Data Musiman,” Indones. Gedung D7 Lt.1, Kampus Sekaran Gunungpati, vol. 6, no. 2, pp. 129–142, 2017, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm

M. Munira Anwar, Khalilah Nurfadilah, and Wahidah Alwi, “Penerapan Metode SARIMA untuk Peramalan Jumlah Pengunjung Wisata Taman Nasional Bantimurung Bulusaraung Maros,” J. Math. Theory Appl., vol. 3, no. 1, pp. 1–7, 2021, doi: 10.31605/jomta.v3i1.1221.

A. Agustin, F. F. Rahani, and F. I. Indikawati, “Prediksi Kualitas Air Menggunakan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA),” J. Manaj. Inform., vol. 12, no. 2, pp. 137–150, 2022, doi: 10.34010/jamika.v12i2.8022.

W. Rahmalina, “Pemodelan Seasonal Autoregressive Integrated Moving Average Untuk Memprediksi Jumlah Kasus Covid-19 di Padang,” J. Mat. Integr., vol. 17, no. 1, p. 23, 2021, doi: 10.24198/jmi.v17.n1.32024.23-31.

M. I. Rizki and T. A. Taqiyyuddin, “Penerapan Model SARIMA untuk Memprediksi Tingkat Inflasi di Indonesia,” J. Sains Mat. dan Stat., vol. 7, no. 2, pp. 62–72, 2021, doi: 10.24014/jsms.v7i2.13168.

P. Utomo and A. Fanani, “Peramalan Jumlah Penumpang Kereta Api di Indonesia Menggunakan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA),” J. Mhs. Mat. Algebr., vol. 1, no. 1, pp. 169–178, 2020, [Online]. Available: http://jurnalsaintek.uinsby.ac.id/mhs/index.php/algebra/article/view/6/6

S. C. Hillmer and W. W. S. Wei, “Time Series Analysis: Univariate and Multivariate Methods.,” J. Am. Stat. Assoc., vol. 86, no. 413, p. 245, 1991, doi: 10.2307/2289741.

D. N. Gujarati, Single-equation regression models. 2013.

W. D. Ray, P. J. Brockwell, and R. A. Davis, Time Series: Theory and Methods., vol. 153, no. 3. 1990. doi: 10.2307/2982983.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JOSTECH Journal of Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.